Abstract

The power module of the Insulated Gate Bipolar Transistor (IGBT) is the core component of the traction transmission system of high-speed trains. The module's junction temperature is a critical factor in determining device reliability. Existing temperature monitoring methods based on the electro-thermal coupling model have limitations, such as ignoring device interactions and high computational complexity. To address these issues, an analysis of the parameters influencing IGBT failure is conducted, and a temperature monitoring method based on the Macro-Micro Attention Long Short-Term Memory (MMALSTM) recursive neural network is proposed, which takes the forward voltage drop and collector current as features. Compared with the traditional electrical-thermal coupling model method, it requires fewer monitoring parameters and eliminates the complex loss calculation and equivalent thermal resistance network establishment process. The simulation model of a high-speed train traction system has been established to explore the accuracy and efficiency of MMALSTM-based prediction methods for IGBT power module junction temperature. The simulation outcomes, which deviate only 3.2% from the theoretical calculation results of the electric-thermal coupling model, confirm the reliability of this approach for predicting the temperature of IGBT power modules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call