Abstract

The discrete element method is a widely used particle orientated simulation approach for modeling granular systems. It is based on tracking each particle's movement and its interactions with the surroundings over time. The motion of a particle is given by a system of coupled ordinary differential equations which are solved numerically. Therefore, models for the forces acting between particles in contact need to be specified. In the past, detailed investigations dealing with the accuracy of tangential force–displacement models have been very limited, with sparse experimental data considered and the frequent restriction of including only fully elastic materials. In large scale discrete element simulations, on the other hand, viscoelastic or plastic material behavior is often assumed for normal contacts and combined with arbitrary tangential models. To address this situation a number of tangential force–displacement models are reviewed including linear models by Cundall and Strack [1979. A discrete numerical model for granular assemblies, Geotechnique 29, 47–65], Di Maio and Di Renzo [2004. Analytical solution for the problem of frictional-elastic collisions of spherical particles using the linear model. Chemical Engineering Science 59(16), 3461–3475], Brendel and Dippel [1998. Lasting contacts in molecular dynamics simulations. In: Herrmann, H.J., Hovi, J.-P., Luding, S. (Eds.), Physics of Dry Granular Media, Dordrecht. Kluwer Academic Publishers, pp. 313], Walton and Braun [1986. Viscosity, granular temperature and stress calculations for shearing assemblies of inelastic, frictional disks. Journal of Rheology 30, 949] and simple non-linear models by Brilliantov et al. [1996. Model for collisions in granular gases. Physical Review E 53(5), 5382–5392], Tsuji et al. [1992. Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technology 71, 239–250] and Di Renzo and Di Maio [2005. An improved integral non-linear model for the contact of particles in distinct element simulations. Chemical Engineering Science 60(5), 1303–1312]. Whereas for fully elastic materials the parameters of the tangential force–displacement models can be derived directly from mechanical properties a scaling approach is proposed for the estimation of the parameters in the non-elastic case. The effect of different normal force–displacement models is analyzed. For all model combinations macroscopic final collision properties are derived and compared to experimental results by Foerster et al. [1994. Measurements of the collision properties of small spheres. Physics of Fluids 6(3), 1108–1115], Lorenz et al. [1997. Measurements of impact properties of small, nearly spherical particles. Experimental Mechanics 37(3), 292–298], Gorham and Kharaz [2000. The measurement of particle rebound characteristics. Powder Technology 112(3), 193–202] and Dong and Moys [2003. Measurement of impact behaviour between balls and walls in grinding mills. Minerals Engineering 16(6), 543–550; 2006. Experimental study of oblique impacts with initial spin. Powder Technology 161(1), 22–31].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.