Abstract
This paper proposes a method to deal with the problem of sports classification through audio analysis. First, a two-pass audio segmentation module is developed as the front-end to extract announcer's speech from the audio streams. Then speech recognition technology is employed on the speech segments to extract keywords which are used as features to distinguish different sports. Finally, based on the keyword spotting (KWS) results and specific keywords selected for each kind of sports, a score ranking strategy is designed for conducting classification automatically. For robust KWS in our system, adaptation techniques for acoustic model and language model are employed and both of them show significant improvements on the KWS performance. Fifteen games of seven kinds of sports are used to evaluate the system performance. By integrating all the techniques, an average figure of metric (FOM) of 70.74 is achieved on the KWS task, a 100% accuracy rate is achieved on sports classification task using all detected keywords of each game.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.