Abstract

For a speech-recognition system based on continuous-density hidden Markov models (CDHMM), speaker adaptation of the parameters of CDHMM is formulated as a Bayesian learning procedure. A speaker adaptation procedure which is easily integrated into the segmental k-means training procedure for obtaining adaptive estimates of the CDHMM parameters is presented. Some results for adapting both the mean and the diagonal covariance matrix of the Gaussian state observation densities of a CDHMM are reported. The results from tests on a 39-word English alpha-digit vocabulary in isolated word mode indicate that the speaker adaptation procedure achieves the same level of performance as that of a speaker-independent system, when one training token from each word is used to perform speaker adaptation. It shows that much better performance is achieved when two or more training tokens are used for speaker adaptation. When compared with the speaker-dependent system, it is found that the performance of speaker adaptation is always equal to or better than that of speaker-dependent training using the same amount of training data.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.