Abstract

We demonstrate optical and electronic properties and structure of an efficient hole transporting material (HTM), soluble non-peripherally substituted octahexyl tetrabenzomonoasaporphyrin (C6TBMAPH2), for perovskite solar cells (PSCs). X-ray diffraction patterns of C6TBMAPH2 thin film with two peaks at around 4.6° and 4.9° indicate that the symmetry of columns is likely to be 2-dimensional rectangular lattice and stacking period of molecules along columnar axis may be disordered. The absorption spectra of C6TBMAPH2 exhibit the two predominated bands at around 400 and 650 nm, which correspond to the B and Q bands, respectively. Furthermore, the electronic band structure of C6TBMAPH2, was calculated with highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels of −5.0 and −3.3 eV, respectively. All results suggest that C6TBMAPH2 could be one potential HTM to extract hole and block electron from the absorber to the back electrode. Finally, an efficient solid-state, thin-film PSC utilising C6TBMAPH2 HTM is fabricated with the best PCEs of 4.9 and 5.6% under forward and reverse bias scans, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.