Abstract

Selective oxidation of hydrogen sulfide (H2S) was studied on zeolite-NaX and zeolite-KX. Elemental sulfur yield over zeolite-NaX was achieved about 90% at 225 °C for the first 4 hours, but it gradually decreased to 55% at 40 hours after the reaction started. However, yield of elemental sulfur on zeolite-KX was obtained within the range of 86% at 250 °C after 40 hours. The deactivation of the zeolite-NaX and -KX catalysts was caused by the coverage of a sulfur compound, produced by the selective oxidation of H2S over the catalysts. The coverage of a sulfur compound over the zeolite-NaX and -KX was confirmed by the TPD (temperature-programmed desorption) tests utilizing thermogravimetric analysis and FT-IR analysis. Even though high temperature was required to prevent the deactivation of zeolite-NaX, the temperature cannot be raised to 250 °C or above due to the SO2 production and the decrease of thermodynamic equilibrium constant. Zeolite-KX was superior to the zeolite-NaX for both its selectivity to elemental sulfur and its resistance to deactivation in the selective oxidation of H2S.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.