Abstract

Vinyl ester (VE) resins have good resistance against corrosive and hostile environments, and formation of micro cracks. They also have good thermal resistivity as well as mechanical properties which result in their usage in many applications such as sewer pipes, solvent storage tanks, and mining and other industrial equipments. In the present work, nanosized silica was employed as reinforcement to improve VE mechanical properties. Hence, to study the influence of nanosilica particles on the tensile strength, Young’s modulus and toughness of mentioned nanocomposites, nanosilica-vinyl ester nanocomposites with different silica weight percentages (0⋅3, 0⋅75, 1) were fabricated. Moreover, the effects of nanosilica particles on the tensile fracture surfaces and VE deformation mechanisms were studied by scanning electron microscopy (SEM). It was observed that increasing the nanosilica fillers results in tensile strength deterioration as well as Young’s Modulus increasing. Adding nanosilica reinforcements up to 0⋅3 (%wt) improves the fracture toughness while decreasing the fracture energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.