Abstract

In resin transfer molding, mold filling is governed by the flow of resin through a preform which is considered as an anisotropic porous media. The resin flow is usually described by Darcy's law and the permeability tensor must be obtained for filling analysis. When the preform is composed of more than two layers with different in-plane permeability, effective average permeability should be determined for the flow analysis in the mold. The most frequently used averaging scheme is the weighted averaging scheme, but it does not account for the transverse flow between adjacent layers. A new averaging scheme is suggested to predict the effective average permeability of the multi-layered preform, which accounts for the transverse flow effect. When the flow in the mold is unsaturated, the effective average permeability is predicted by using the predicted mold filling time and transverse permeability. The new scheme is verified by measuring the effective permeability of the multi-layered preforms which consist of glass fiber random mats, carbon fiber woven fabrics, aramid fiber woven fabrics. Fluid flow through the preform composed of more than two layers with different in-plane permeability shows different flow fronts between layers. The difference in the flow front advancement is observed with a digital camcorder. The predicted flow front is compared with the experimental results and shows a good agreement. It is expected that the effective average permeability can be used for modeling the resin flow through the multi-layered preform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call