Abstract
Although human iris pattern is widely accepted as a stable biometric feature, recent research has found some evidences on the aging effect of iris system. In order to investigate changes in iris recognition performance due to the elapsed time between probe and gallery iris images, we examine the effect of elapsed time on iris recognition utilizing 7,628 iris images from 46 subjects with an average of ten visits acquired over two years from a legacy database at Clarkson University. Taken into consideration the impact of quality factors such as local contrast, illumination, blur and noise on iris recognition performance, regression models are built with and without quality metrics to evaluate the degradation of iris recognition performance based on time lapse factors. Our experimental results demonstrate the decrease of iris recognition performance along with increased elapsed time based on two iris recognition system (the modified Masek algorithm and a commercial software VeriEye SDK). These results also reveal the significance of quality factors in iris recognition regression indicating the variability in match scores. According to the regression analysis, our study in this paper helps provide the quantified decrease on match scores with increased elapsed time, which indicates the possibility to implement the prediction scheme for iris recognition performance based on learning of impact on time lapse factors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.