Abstract

This study is a study on the cracking of the main piston surface which is generated in the injection molding machine to generate mold force. The main piston machining process consists of high frequency heat treatment, grinding and super finishing after lathe turning. Scale, defect size, and fracture texture were observed for four cracks on the surface of the piston during the tempering process after high frequency heat treatment using a metallurgical microscope. In this study, it was confirmed that the cracked structure of the piston structure was ferrite and pearlite structure. It was confirmed that cracks progressed to 480 ㎛ and scale layer of 3 ㎛ or less. Surface hardening layer and hardness were min 2.0mm/HRc 58±2 spec 1.6 mm/HRc 56.5~57.5 In addition, cracks on the surface of the piston appear perpendicular to the rolling process. Therefore, it can be assumed that the crack occurred in the low temperature tempering process at 200°C or less after the high frequency heat treatment, not the material defect. Therefore, the temperature should be maintained at 200°C or higher during tempering after high-frequency heat treatment, and the cracking defect on the surface of the piston can be prevented by setting the feed rate to 1.3 mm/s or less during heat treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.