Abstract

The systematic theoretical approaches and atomistic simulation programs to predict thermal properties of crystalline nanostructured materials within first-principles framework are studied here. Recent progress in computational power has enabled an accurate and reliable way to investigate nanoscale thermal transport in crystalline materials using first-principles based calculations. Extracting a large set of anharmonic force constants with low computational effort remains a big challenge in lattice dynamics and condensed-matter physics. This paper focuses on recent progress in first-principles phonon calculations for semiconductor materials and summarizes advantages and limitations of each approach and simulation programs by comparing accuracy of numerical solutions, computational load and calculating feasibility to a wide range of crystalline materials. This work also reviews and presents the coupling model of first-principles molecular dynamic (FPMD) approach that can extract anharmonic force constants directly and solution of linearized Boltzmann transport equation to predict phonon-mediated lattice thermal conductivity of crystalline materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call