Abstract

Optical clearing improves the penetration depth of optical measurements in turbid tissues. Polarization imaging has been demonstrated as a potentially promising tool for detecting cancers in superficial tissues, but its limited depth of detection is a major obstacle to the effective application in clinical diagnosis. In the present paper, detection depths of two polarization imaging methods, i.e., rotating linear polarization imaging (RLPI) and degree of polarization imaging (DOPI), are examined quantitatively using both experiments and Monte Carlo simulations. The results show that the contrast curves of RLPI and DOPI are different. The characteristic depth of DOPI scales with transport mean free path length, and that of RLPI increases slightly with g. Both characteristic depths of RLPI and DOPI are on the order of transport mean free path length and the former is almost twice as large as the latter. It is expected that they should have different response to optical clearing process in tissues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call