Abstract

Publish-subscribe systems present the state of the art in information dissemination to multiple users. Such systems have evolved from simple topic-based to the current XML-based systems. XML-based pub-sub systems provide users with more flexibility by allowing the formulation of complex queries on the content as well as the structure of the streaming messages. Messages that match a given user query are forwarded to the user. This article examines how to exploit the parallelism found in XPath filtering. Using an incoming XML stream, parsing and matching thousands of user profiles are performed simultaneously by matching engines. We show the benefits and trade-offs of mapping the proposed filtering approach onto FPGAs, processing streams of XML at wire speed, and GPUs, providing the flexibility of software. This is in contrast to conventional approaches bound by the sequential aspect of software computing, associated with a large memory footprint. By converting XPath expressions into custom stacks, our solution is the first to provide support for complex XPath structural constructs, such as parent-child and ancestor descendant relations, whilst allowing wildcarding and recursion. The measured speedups resulting from the GPU and FPGA accelerations versus single-core CPUs are up to 6.6X and 2.5 orders of magnitude, respectively. The FPGA approaches are up to 31X faster than software running on 12 CPU cores.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.