Abstract

An oriented graph is a directed graph with no directed cycle of length one or two. The relative clique number of an oriented graph is the cardinality of a largest subset X of vertices such that each pair of vertices is either adjacent or connected by a directed 2-path. It is known that the oriented relative clique number of a planar graph is at most 80. Here we improve the upper bound to 32. We also prove an upper bound of 14 for oriented relative clique number of triangle-free planar graphs. Furthermore, we determine the exact values of oriented relative clique number for the families of outerplanar graphs with girth at least g and planar graphs with girth at least g+2 for all g≥3. Moreover, we study the relation of oriented relative clique number with oriented chromatic number, oriented absolute clique number and maximum degree of a graph. We also show that oriented relative clique number of a connected subcubic graph is at most seven which weakly supports a conjecture by Sopena (JGT 1997).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.