Abstract

In this study, activated polymer-based hard carbons were prepared using various steam activation conditions in order to enhance their hydrogen storage ability. The structural characteristics of the activated carbons were observed by X-ray diffraction and Raman spectroscopy. The N2 adsorption isotherm characteristics at 77 K were confirmed by Brunauer-Emmett-Teller, Barrett-Joyner-Halenda and non-local density functional theory equations. The hydrogen storage behaviours of the activated carbons at 298 K and 10 MPa were studied using a Pressure-Composition-Temperature apparatus. From the results, specific surface areas and total pore volume of the activated carbons were determined to be 1680–2320 m2/g and 0.78–1.39 cm3/g, respectively. It was also observed that various pore size distributions were found to be dependent on the functions of activation time. In the observed result, the hydrogen adsorption of APHS-9-4 increased about 30% more than that of as-prepared hard carbon. This indicates that hydrogen storage capacity could be a function not only of specific surface area or total pore volume, but also of micropore volume fraction in the range of 0.63–0.78 nm of adsorbents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.