Abstract
Preservation of nonnengativity and boundedness in the finite element solution of Nagumo-type equations with general anisotropic diffusion is studied. Linear finite elements and the backward Euler scheme are used for the spatial and temporal discretization, respectively. An explicit, an implicit, and two hybrid explicit–implicit treatments for the nonlinear reaction term are considered. Conditions for the mesh and the time step size are developed for the numerical solution to preserve nonnegativity and boundedness. The effects of lumping of the mass matrix and the reaction term are also discussed. The analysis shows that the nonlinear reaction term has significant effects on the conditions for both the mesh and the time step size. Numerical examples are given to demonstrate the theoretical findings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.