Abstract

The mathematical model of a three-phase voltage source pulse-width modulation (PWM) DC/AC inverter is non-linear, and in view of the traditional linear control strategy it can not meet the requirements of designing a high-performance inverter. What's more, when the loads are not pure resistive loads, the inverter further requires that the controller possess high-performance. This paper proposes a nonlinear control strategy for the inverter called Passivity-based Control. We can alter the inverter model in three-phase abc coordinate to two-phase synchronous rotating dq coordinate for establishing the port-control Hamiltonian (PCH) model for this system. We can control the distribution of energy in the system to achieve the control aim. Simulation results show that the passivity-based control method can make this system possess a level of high-performance that is both robust and dynamic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.