Abstract

Compared with traditional terminals, two automated stacking cranes (ASCs) are configured for each container block of automated container terminal (ACT), which interact with automated guided vehicles (AGVs) and container trucks at the two ends of a container block individually. To increase the capacity, container yards with multiple rows of blocks perpendicular to the terminal’s shoreline are considered. To utilize the yard spaces, twin ASCs are set to share transport tracks installed at the two sides of a block, while interferences between the ASCs causes the routing and sequencing operations. In order to control the scheduling of twin ASCs, the interference model is established by analyzing the time overlap between tasks. Considering the influence of AGV transportation time, the model are then established to sequence the container handling tasks under the minimization of waiting time and makespan. A particle swarm optimization algorithm (PSO) based on graph theory model is design to solve the problem. Numerical experiments show that the algorithm is more competitive than traditional algorithm. Based on the model and experimental result, the practical significance of applying the algorithm to the actual situation is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.