Abstract
Radio Frequency (RF) energy harvesting circuits have to harvest energy from very weak sources demanding high sensitivity and high efficiency. In this paper it is presented a study on rectifiers used in RF energy harvesting systems with MOSFET transistors operating in weak-inversion region, where both charge and discharge currents have the same order of magnitude. The study proves that the maximum output voltage of a MOSFET rectifier for very low input voltage is dependent in the first order to the relation between the signal amplitude and thermal voltage (VT). It is presented a method to calculate the maximum theoretical output voltage in two circuit topologies for input voltages of 10mV, 50mV and 100mV. The circuits are studied for 130nm, 90nm and 45nm CMOS technologies, proving the hypothesized theory that the maximum theoretical output voltage is not a function of the normal transistor parameters (i.e. Vt0, W/L) but instead, the relation between the input voltage amplitude and VT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.