Abstract

Regulations for the control of air-pollutant emissions from ships within pollutant emission control areas (ECAs) have been issued for several years, but the lack of practical technologies and fundamental theory in the implementation process remains a challenge. In this study, we designed a model to calculate the nitrogen-oxide-emission intensity of ships and the sulfur content of ship fuels using theoretical deduction from the law of the conservation of mass. The reliability and availability of the derived results were empirically evaluated using measurement data for NOx, SO2, and CO2 in the exhaust gas of a demonstration ship in practice. By examining the model and the measured or registered fuel-oil-consumption rates of ships, a compliance-determination workflow for NOx-emission intensity and fuel-sulfur-content monitoring and supervision in on-voyage ships were proposed. The results showed that the ship fuel’s NOx-emission intensity and sulfur content can be evaluated by monitoring the exhaust-gas composition online and used to assist in maritime monitoring and the supervision of pollutant emissions from ships. It is recommended that uncertainties regarding sulfur content should be considered within 15% during monitoring and supervision. The established model and workflow can assist in maritime monitoring. Meanwhile, all related governments and industry-management departments are advised to actively lead the development of monitoring and supervision technology for ship-air-pollutant control in ECAs, as well as strengthening the quality management of ships’ static data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call