Abstract

Controlled friction and wear are the prime requirements of a braking system. The generation of wear debris depends on the brake materials properties, which in turn controls the tribological behavior. Present study deals with the performance evaluation and failure analysis of two commercial brake pads. Tribo Testing Rig (TTR) was used to evaluate the performance of brake. The tests were performed by making a tribo-pair of brake pad against the rotating disc with varying speed and pressure conditions. The wear response was quantified by mass loss, while the friction was measured in terms of coefficient of friction. Virgin and worn surfaces were analyzed using X-ray diffractometer (XRD), energy dispersive spectroscopy (EDAX) and Scanning electron microscope (SEM) to understand the wear and friction mechanisms. It was found that the type of constituents present in the brake-pad material and their spatial distribution plays an important role in controlling the wear and friction behavior. The high wear and friction was attributed to the presence of bulky particles of Fe and Si.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call