Abstract

The paper concerns modeling the microstructure of a hypereutectic aluminum-silicon alloy developed by the authors with the purpose of application for automobile cylinder liners showing high resistance to abrasive wear at least equal to that of cast-iron liners. With the use of the nanoindentation method, material properties of intermetallic phases and matrix in a hypereutectic Al-Si alloy containing Mn, Cu, Cr, Ni, V, Fe, and Mg as additives were examined. The scanning electron microscope equipped with an adapter for chemical composition microanalysis was used to determine the chemical composition of intermetallics and of the alloy matrix. Intermetallic phases, such as Al(Fe,Mn,M)Si, Al(Cr,V,M)Si, AlFeSi, AlFeNiM, AlCuNi, Al2Cu, and Mg2Si, including those supersaturated with various alloying elements (M), were identified based on results of X-ray diffraction (XRD) tests and microanalysis of chemical composition carried out with the use of X-ray energy dispersive spectroscopy (EDS). Shapes of the phases included regular, irregular, or elongated polygons. On the disclosed intermetallic phases, silicon precipitations, the matrix, values of the indentation hardness (HIT), and the indentation modulus (EIT) were determined by performing nanoindentation tests with the use of a Nanoindentation Tester NHT (CSM Instruments) equipped with a Berkovich B-L 32 diamond indenter. The adopted maximum load value was 20 mN.

Highlights

  • The research on the application of aluminum-silicon alloys for manufacturing automobile engine cylinder liners are carried out mainly by industrial laboratories

  • In the AL-CAST research concept developed by the company TRIMET Aluminium AG [10], traditional cylinder liners were replaced with new hybrid ones, the outer surfaces of which were made of near-eutectic aluminum-silicon alloy, whereas the inner surface was made of a hypereutectic Al-Si alloy containing about 30 wt.% silicon

  • A new multicomponent hypereutectic silumin is developed for application in the process of manufacturing automobile cylinder cast-in liners

Read more

Summary

Introduction

The research on the application of aluminum-silicon alloys for manufacturing automobile engine cylinder liners are carried out mainly by industrial laboratories. There are gaps in the knowledge concerning the forms of microstructure development in cylinder liner castings characterized, among other things, by high resistance to abrasive wear. It follows from the available technical literature that monoblocks and/or cylinder liners for some motorcar models of Porsche, Jaguar, Mercedes, and Audi brands were or currently are manufactured using hypereutectic. In the AL-CAST research concept developed by the company TRIMET Aluminium AG [10], traditional cylinder liners were replaced with new hybrid ones, the outer surfaces of which were made of near-eutectic aluminum-silicon alloy, whereas the inner surface was made of a hypereutectic Al-Si alloy containing about 30 wt.% silicon. Authors of papers [11,12] conducted studies on the development of monolithic cylinder blocks of Al-20 wt.% Si alloy

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.