Abstract

Lunar penetrating radar (LPR) is an important way to evaluate the geological structure of the subsurface of the moon. The Chang’E-3 has utilized LPR, which is equipped on the lunar rover named Yutu, to obtain the shallow lunar regolith structure in Mare Imbrium. The previous result provides a unique opportunity to map the subsurface structure and vertical distribution of the lunar regolith with high resolution. In order to evaluate the LPR data, the study of lunar regolith media is of great significance for understanding the material composition of the lunar regolith structure. In this letter, we focus on the lunar regolith quantitative random model and parameter inversion with LPR synthetic data. First, based on the Apollo drilling core data, we build the lunar regolith quantitative random model with clipped Gaussian random field theory. It can be used to model the discrete-valued random field with a given correlation structure. Then, we combine radar wave impedance and stochastic inversion methods to carry out LPR data inversion and parameter estimation. The results mostly provide reliable information on the lunar regolith layer structure and local details with high resolution. This letter presents a further research strategy for lunar probe and deep-space detection with LPR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call