Abstract

This paper presents a theoretical analysis and an experimental test on a shell-and-tube latent heat storage exchanger. The heat exchanger is used to recover high-temperature waste heat from industrial furnaces and off-peak electricity. It can also be integrated into a renewable energy system as an energy storage component. A mathematical model describing the unsteady freezing problem coupled with forced convection is solved numerically to predict the performance of the heat exchanger. It provides the basis for an optimum design of the heat exchanger. The experimental study on the heat exchanger is carried out under various operating conditions. Effects of various parameters, such as the inlet temperature, the mass flow rate, the thickness of the phase-change material and the length of the pipes, on the heat transfer performance of the unit are discussed combined with theoretical prediction. The criterion for analyzing and evaluating the performance of heat exchanger is also proposed. Copyright © 2001 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.