Abstract

In the present study, some properties of Killing vector fields are investigated on 4-dimensional manifolds in case of the signature of the metric tensor 1 is either Lorentz or positive definite or neutral. First of all, the notation and the main object of the study are introduced on these manifolds. Later on, some special subalgebras are examined for the members of the Killing algebra when the Killing vector field vanishes at a point of the manifold admitting any of these metric signatures. The constraints of this examination to the Weyl conformal curvature tensor and the Ricci tensor are then studied and some results are obtained. Finally, some examples related to these results are given for all metric signatures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.