Abstract
In this paper, we derive a partial differential equation, which is interpreted as a continuous version of linear scale space, and get a nonlinear scale space by applying nonlinear function to the partial differential equation. The linear scale spaces such as Gaussian pyramid, Laplacian pyramid or wavelets, etc. usually obtain coarser resolutions via iterative filtering using low-pass filters such as Gaussian kernel. However, it replaces the location of edges as the scale increases so that it has some difficulty in image segmentation. We show that the nonlinear scale space can overcome such shortcomings as edge replacement and is very robust from the additive noise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.