Abstract

In this study, initially high molecular weight poly(azo-pyridine-benzophenone-imide) (PAPBI) has been fabricated using facile approach. Uniformly aligned electrospun PAPBI and PAPBI/multi-walled carbon nanotube (MWCNT) nanofibers were then produced via electrospinning of desired solutions. Self-reinforcement technique was used to fabricate PAPBI-based nanofiber reinforced films. Uniform dispersion, orientation and adhesion between carbon nanotubes and polymer improved the physical properties of resulting nanocomposites. Fourier transform infrared spectroscopy was used to identify the structures of polymer and self-reinforced nanocomposite films. Scanning and transmission electron microscopy showed that the electrospun PAPBI/MWCNT nanofibers were uniformly aligned and free of defects. Moreover, polyimide matrix was evenly coated on the surface of electrospun nanofibers, thus, preventing the fibers from bundling together. Samples of 1–3 wt% of as-prepared electrospun nanofibers were self-reinforced to enhance the tensile strength of the films. Films of 3 wt% PAPBI/MWCNT nanofiber-based nanocomposite showed higher value in tensile strength (417 MPa) relative to 3 wt% PAPBI nanofibers (361 MPa) reinforced film. Tensile modulus of the PAPBI/MWCNT system was also significantly improved (19.9–22.1 GPa) compared with PAPBI system (13.9–16.2 GPa). Thermal stability of PAPBI/MWCNT nanofibers reinforced polyimide was also superior having 10 % gravimetric loss at 600–634 °C and glass transition temperature 272–292 °C relative to the neat polymer (T 10 545 °C, T g 262 °C) and PAPBI nanofiber-based system (T 10 559–578 °C, T g 264–269 °C). New high-performance self-reinforced polyimide nanocomposites may act as potential contenders for light-weight aerospace materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.