Abstract
The phase changing problem at the liquid-solid interface that occurs during stationary gas tungsten arc (GTA) welding has been studied by considering the four driving forces for weld pool convection, that is the electromagnetic force, the buoyancy force, the aerodynamic drag force and the surface tension force at the weld pool surface. In the numerical simulation, difficulties associated with the irregular shape of the moving interface have been successfully overcome by adopting a boundary-fitted coordinate system that eliminates the analytical complexity at the liquid-solid boundary. This method also has the capacity to handle the time-dependent changing solution domain of the moving boundary problem and could be applied effectively to this transient weld pool development problem with the moving boundary and phase change condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.