Abstract
Global Positioning System (GPS) has extensively been used in various fields. Geometric Dilution of Precision (GDOP) is an indicator showing how well the constellation of GPS satellites is geometrically organized. GPS positioning with a low GDOP value usually gains better accuracy. However, the calculation of GDOP is a time- and power-consuming task that involves complicated transformation and inversion of measurement matrices. When selecting from many GPS constellations the one with the lowest GDOP for positioning, methods that can fast and accurately obtain GPS GDOP are imperative. Previous studies have shown that numerical regression on GPS GDOP can get satisfactory results and save many calculation steps. This paper deals with the approximation of GPS GDOP using statistics and machine learning methods. The technique of support vector machines (SVMs) is mainly focused. This study compares the performance of several methods, such as linear regression, pace regression, isotonic regression, SVM, artificial neural networks, and genetic programming (GP). The experimental results show that SVM and GP have better performance than others.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Instrumentation and Measurement
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.