Abstract
We evaluate optimization techniques to reduce the necessary user interaction for inverse modeling applications as they are used in the technology computer-aided design field. Four optimization strategies are compared. Two well-known global optimization methods, simulated annealing and genetic optimization, a local gradient-based optimization strategy, and a combination of a local and a global method. We rate the applicability of each method in terms of the minimal achievable target value for a given number of simulation runs and in terms of the fastest convergence. A brief overview over the three used optimization algorithms is given. The optimization framework that is used to distribute the workload over a cluster of workstations is described. The actual comparison is achieved by means of an inverse modeling application that is performed for various settings of the optimization algorithms. All presented optimization algorithms are capable of evaluating several targets in parallel. The best optimization strategy that is found is used in the calibration of a model for silicon self-interstitial cluster formation and dissolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.