Abstract

Supercritical multi-thermal fluid is an emerging and efficient heat carrier for thermal recovery of heavy oil, but the generation of supercritical multi-thermal fluid and its feasibility in thermal recovery are rarely discussed. In this paper, generation and flooding experiments of supercritical multi-thermal fluid were carried out, respectively, for the generation and feasibility of supercritical multi-thermal fluid. During the experiment, the temperature and pressure in the reactor and sand-pack were monitored and recorded, the fluid generated by the reaction was analyzed by chromatography, and enthalpy of the reaction product and displacement efficiency were calculated, respectively. The experimental results showed that the change in temperature and pressure in the reactor could be roughly divided into three stages in the generation process of supercritical multi-thermal fluid. The higher the proportion of oil in the reactant, the higher the maximum temperature in the reactor. When the proportion of oil and water in the reactant was constant, the temperature rise in the reactor was basically the same under different initial temperature and pressure conditions. Compared with the initial temperature and pressure, the oil–water ratio of the reactants had a significant effect on the generated supercritical multi-thermal fluid. The higher the proportion of oil, the more gas that was generated in the supercritical multi-thermal fluid, and the lower the specific enthalpy of the thermal fluid. Under the same proportion of oil and water, the gas–water mass ratio of the supercritical multi-thermal fluid generated by the reaction of crude oil was lower, and the specific enthalpy was higher. Through this study, it was found that supercritical multi-thermal fluid with a low gas–water mass ratio had higher oil displacement efficiency, higher early oil recovery rate, a larger supercritical area formed in the oil layer, and later channeling. The results of this study show that the optimal gas–water mass ratio of supercritical multi-thermal fluid was about 1, under which the oil displacement efficiency and supercritical area in the oil layer reached the maximum. Correspondingly, the optimal proportion of oil in the reactant when generating supercritical multi-component thermal fluid was about 10%. In oilfield applications, because the gas–water ratio in supercritical multi-component thermal fluid has a significant impact on oil displacement efficiency, the optimization of supercritical multi-thermal fluid should not only consider the generation process but also consider the oil displacement effect of the thermal fluid. The findings of this study could improve our understanding of the characteristics of generating supercritical multi-thermal fluid and the feasibility of supercritical multi-thermal fluid generated under different conditions in the oil displacement process. This research is of great significance for field applications of supercritical multi-thermal fluid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call