Abstract
This paper deals with the structural analysis of composite materials with non-homogenous orientation of the reinforcement. During this research, a short fiber-reinforced polymer matrix composite is studied. In this case, inhomogeneity of the reinforcement orientation caused by injection molding manufacturing process is analyzed. The main objective of the paper is the investigation of an influence of process-induced orientation of the reinforcement on mechanical properties of the material in comparison with unidirectional and random reinforcement orientation. In particular, natural frequencies and transient response of an exemplary composite component are investigated. To specify effective properties of the composite, Mori–Tanaka’s micromechanical model is assumed. Orientation distribution of the reinforcement is determined by injection molding simulation. To determine elastic material properties dependent on non-homogenous orientation of the reinforcement, an orientation averaging procedure is taken into account. Therefore, during this study, effectiveness of the orientation averaging procedure and different closure approximations influence on the results are studied. Orientation averaging results are compared with numerical results obtained by finite element-based homogenization of composites with prescribed second-order orientation tensor. Finally, the obtained material parameters were applied into a macroscale finite element model, and numerical simulation with different boundary conditions was conducted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.