Abstract

A pebble bed reactor is filled by a large number of pebbles, which are randomly piled up in the core region. During the process of fuel loading and extraction, the pebbles flow downward through the core. The basic physics of the dense granular flow such as pebble flow is not fully understood; hence, the dynamic core of the pebble bed reactor has been a subject of concern among designers and regulators. The kinematic model is one of the representative models for the reconstruction of the granular flow velocity, however, it is noted that there are some limitations in the reconstruction ability. In this study, a modified kinematic model was proposed to enhance the reconstruction ability of the pebble velocity profile. Pebble flow experiments were performed to derive the coefficients needed for the modified kinematic model and to verify the reconstruction ability and the applicability of the proposed method in the annular core. The modified kinematic model can contribute to accurate velocity evaluation as well as large applicability for the specific core types such as an annular core. Also, the results can be used for reference data in the design of a pebble bed reactor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.