Abstract

The two important factors that affect sunlight assisted water splitting ability of TiO2 are its charge recombination and large band gap. We report the first demonstration of nitrogen doped triphase (anatase-rutile-brookite) TiO2 nanotubes as sun light active photocatalyst for water splitting with high quantum efficiency. Nitrogen doped triphase TiO2 nanotubes, corresponding to different nitrogen concentrations, are synthesized electrochemically. Increase in nitrogen concentration in triphase TiO2 nanotubes is found to induce brookite to anatase phase transformation. The variation in density of intra-band states (Ti3+ and N 2p states) with increase in nitrogen doping are found to be critical in tuning the photocatalytic activity of TiO2 nanotubes. The presence of bulk heterojunctions in single nanotube of different nitrogen doped TiO2 samples is confirmed from HRTEM analysis. The most active nitrogen doped triphase TiO2 nanotubes are found to be 12 times efficient compared to pristine triphase TiO2, for solar hydrogen generation. The band alignment and charge transfer pathways in nitrogen doped TiO2 with triphase heterojunctions are delineated. Bulk heterojunctions among the three phases present in the nanotubes with intra-band defect states is shown to enhance the photocatalytic activity tremendously. Our study also confirms the theory that three phase system is efficient in photocatalysis compared to two phase system.

Highlights

  • (anatase-rutile-brookite) TiO2 nanotubes as sun light active photocatalyst for water splitting with high quantum efficiency

  • The nitrogen concentration present in NT-0.5, NT-1.5, NT-3 and NT-4.5 are estimated to be 0.19, 0.29, 0.37 and 0.48 At % respectively from N 1s spectra of X-ray photoelectron spectra (XPS) which is demonstrated in later sections

  • The results indicate that the Fermi level shifts towards conduction band edge until the doping is at 0.29% (NT-1.5), it starts to shift away from the conduction band edge as in the case of NT-3 and NT-4.5 where the nitrogen doping is high

Read more

Summary

Introduction

(anatase-rutile-brookite) TiO2 nanotubes as sun light active photocatalyst for water splitting with high quantum efficiency. It is found that compared to other non metals, nitrogen doping is more appropriate for extending the photocatalytic activity of TiO2 into visible region because of its comparable atomic size to that of oxygen, small ionization energy and stability[14,15]. The study on biphase heterostructured titania is reported to show the best photocatalytic efficiency www.nature.com/scientificreports/

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call