Abstract

Backgroundα-Mangostin was extracted with methanol from the rind of mangosteen fruit and purified by using silica gel column chromatography technique. The compound is characterised using infrared, 13C and 1H NMR as well as UV–vis spectroscopy. The α-mangostin dispersion in colloidal systems was studied by incorporating it with an ionic microgel, poly (N-Isopropylacrylamide)-co-2VP at different pH.ResultThe DLS result showed the size of microgel-α-mangostin mixture declined from 548 nm to 200 nm upon the increment of the pH. Moreover, it was found the morphology of loaded compound depended largely on the nature of the continuous phase of the microgel system. Interestingly, by manipulating the pH, α-mangostin tends to form crystal at extremely low pH and transforms into spherical shapes at pH 6.ConclusionThis research shows different structures of the α-mangostin particle that are attributed by adjusting the pH using microgel systems as a template.

Highlights

  • Mangosteen, the ‘queen’ of all fruits is a plant native to Southeast Asia that is used as traditional remedy to treating skin infections wound, improve muscle and bone pain, eating disorder, diarrhea and accelerating wound healing [1,2]

  • This research shows different structures of the α-mangostin particle that are attributed by adjusting the pH using microgel systems as a template

  • Yellow compound was successfully extracted from the rind of Garcinia Mangostana Linn., which has similarity with α-mangostin characteristics and supported by data that is highly significant with previous literature

Read more

Summary

Introduction

Mangosteen, the ‘queen’ of all fruits is a plant native to Southeast Asia that is used as traditional remedy to treating skin infections wound, improve muscle and bone pain, eating disorder, diarrhea and accelerating wound healing [1,2]. Among the essential phytonutrients found in the rind of the mangosteen, α-mangostin or 1,3,6-trihydroxy-7-methoxy, 28-bis (3-methyl-but-2-enyl)-xanthen-9-one stands alone in its impressive benefits. Since it was first discovered by W. Schmid in 1855 [3], this compound has attracted many researchers due to its biological active properties such as antioxidant [4], anti bacteria [5], antifungal [6], anti inflammatory [7], anti cancer [8] and anti tuberculosis [9], therapeutic drugs [10] and being used as mosquitoes larvicide [11] It has been commercialised as supplement in food products and natural dyes in fabric industries, which are readily available in the worldwide market. Its poor solubility in aqueous solution and low oral bioavailability are the limiting factors for

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.