Abstract
In this paper, at first a color image is taken Then the image is transformed into a grayscale image. After that, the motion blurring effect is applied to that image according to the image degradation model described in equation 3.the blurring effect can be controlled by a and b components of the model. Then random noise is added in the image via MATLAB programming. Many methods can restore the noisy and motion blurred image: particularly in this paper inverse filtering as well as wiener filtering are implemented for the restoration purpose consequently, both motion blurred and noisy motion blurred image are restored via inverse filtering as well as wiener filtering techniques and the comparison is made among them.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Scientific Research in Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.