Abstract
In current study, machining characteristics of Nimonic C-263 are analysed by TAGUCHI and modelled using Artificial Neural Networks (ANN). The response parameters under consideration are Material Erosion Rate (MER), Electrode Wear Rate (EWR), Surface Roughness (SR) and Dimensional Overcut (DOC). A regression mathematical model is also developed to verify the capabilities of ANN. The modelling of ANN includes identifying appropriate combination of hidden layers and number of neurons in each hidden layer. Study on machining characteristics revealed, peak current as the most influential process parameters affecting all the responses; followed by Pulse on-time. A contrary effect is observed for Pulse off-time. A rare process parameter named flushing pressure showed negligible influence on responses. Among various ANN architectures, 6-6 architecture is noted to possess phenomenal prediction accuracy of 99.71% compared to 93.55% of regression analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Engineering & Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.