Abstract
One of the most significant issues facing internet druggies currently is malware. Polymorphic malware is a new type of vicious software that's further adaptable than former generations of contagions. Polymorphic malware constantly modifies its hand traits to avoid being linked by traditional hand- grounded malware discovery models. Counter-attacking measures have been more effective, with antivirus companies expanding their signature database, which is routinely updated, although they are inefficient and ineffective in the case of polymorphic malware. To identify vicious pitfalls or malware, we used a number of machine literacy ways. A high discovery rate indicated that the algorithm with the stylish delicacy was named for operation in the system. As an advantage, the confusion matrix measured the number of false cons and false negatives, which handed fresh information regarding how well the system worked. In particular, it was demonstrated that detecting dangerous business on computer systems, and thereby perfecting the security of computer networks, was possible using the findings of malware analysis and discovery with machine literacy algorithms (Naive Byes, SVM,RF, and with the proposed approach) integrals. The results showed that when compared with other classifiers, DT( 99), CNN(97.76), and SVM(94.41) performed well in terms of discovery delicacy. These results are significant, as vicious software is getting decreasingly common and complex. Keywords: CNN, SVM, DT, cybersecurity, cyberattack, cyber warfare, cyber threats, suspicious activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.