Abstract

With the rapid increase in the number of cyber-attacks, detecting and preventing malicious behavior has become more important than ever before. In this study, we propose a method for detecting and classifying malicious behavior in host process data using machine learning algorithms. One of the challenges in this study is dealing with high-dimensional and imbalanced data. To address this, we first preprocessed the data using Principal Component Analysis (PCA) and Uniform Manifold Approximation and Projection (UMAP) to reduce the dimensions of the data and visualize the distribution. We then used the Adaptive Synthetic (ADASYN) and Synthetic Minority Over-sampling Technique (SMOTE) to handle the imbalanced data. We trained and evaluated the performance of the models using various machine learning algorithms, such as K-Nearest Neighbor, Naive Bayes, Random Forest, Autoencoder, and Memory-Augmented Deep Autoencoder (MemAE). Our results show that the preprocessed datasets using both ADASYN and SMOTE significantly improved the performance of all models, achieving higher precision, recall, and F1-Score values. Notably, the best performance was obtained when using the preprocessed dataset (SMOTE) with the MemAE model, yielding an F1-Score of 1.00. The evaluation was also conducted by measuring the Area Under the Receiver Operating Characteristic Curve (AUROC), which showed that all models performed well with an AUROC of over 90%. Our proposed method provides a promising approach for detecting and classifying malicious behavior in host process data using machine learning algorithms, which can be used in various fields such as anomaly detection and medical diagnosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.