Abstract

Abstract Bladed disks are important components of gas turbine engine. Rotor disk spool drum assemblies of gas turbine engine constitute 20–25% of total engine weight. Increasing thrust-to-weight ratio and engine life is paramount for designers. Blisk reduces significantly weight of rotor, compared against conventional disks for aero engines. This paper brings out specific challenges faced while re-designing bladed disk into blisks including structural integrity aspects under various operating loads. This paper presents a case study on re-design of typical compressor bladed disk into a blisk, without changing the flow path or airfoil configuration, within space constraints. Weight reduction of rotor disk is carried out using shape optimization technique. Blisk configuration is derived from existing bladed disk general arrangement. This paper describes methodology of weight optimization of blisk using ‘HyperStudy’ tool considering static and dynamic 3D models with ANSYS solver. APDL fatigue life macro is developed for fatigue life prediction, using strain-life approach. In this paper 3D bladed disk, baseline and optimized 3D blisk modal analyses results are used to ensure minimum interferences for engine operating conditions. The developed methodology for optimization can be appreciated by significant weight reduction (30%), while meeting design criteria and increased fatigue life.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.