Abstract

Copper alloy C194 lead frame occasionally has been observed creates non-sticking defect at wire bond process in typical microelectronic assembly line. The effect was significantly assessed as process variation during die attach. In this study, microstructure and mechanical properties of copper alloy lead frames were investigated. The copper alloy lead frames were selected from different batches in the production line that produced sticking (typical performance) and non-sticking defect. The micro structural and structural properties were investigated by means of optical microscopy (OM) and X-ray diffraction (XRD), respectively. The hardness and tensile strength were also determined. The result revealed that non-sticking lead frame has larger grain size of 43.8 nm than typical performance lead frame. Due to lower dislocation density, tensile strength and hardness of typical lead frame with smaller grain size were higher than that of defect lead frame. Elongation of defect lead frame was reached above 10% as compared to typical performance lead frame groups with the value below 4%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.