Abstract

AbstractRationalization of the maintenance of gas‐insulated equipment under operation and lifetime extension based on the results of appropriate diagnosis are necessary to reduce the cost of gas‐insulated equipment. Therefore, condition‐based maintenance (CBM) is required and accurate methods for observing the inside of equipment are important. In this report, we describe a diagnosis method that can be used for actual gas‐insulated equipment, such as to assess the deterioration of the spacers made of epoxy resin and to detect loose connections in the central conductor. The principal results are summarized as follows:(1) The quantity of decomposition gases depends on the moisture and magnitude of the partial discharge. However, decomposition gases were detected even if SF6 had low moisture content (less than 100 ppm) similar to that used in actual equipment. This means that our method can be applied to actual equipment.(2) It became clear that CF4 is a typical gas generated by partial discharge on the spacer surface. Therefore, it is possible to diagnose spacer deterioration by monitoring CF4.(3) Decomposition gases (SF4, SO2, SO4, SO2F2) were generated by impulse breakdown, which was assumed to be due to repetition discharge caused by insulation failure and loose connections.(4) SF6 gas was assumed to be exposed to a loose connection and was heated from room temperature to 800 °C, and the generated decomposition gases were analyzed by FTIR in real time. As a result, the decomposition gases were generated at temperatures above approximately 500 °C in a heating time of 1.5 minutes. Therefore, a loose connection can be detected by analyzing the decomposition gas. © 2011 Wiley Periodicals, Inc. Electr Eng Jpn, 176(2): 22–30, 2011; Published online in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/eej.21108

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.