Abstract

A series of MCCI tests was performed in COTELS project at NUPEC to examine concrete degradation characteristics during MCCI with and without water addition onto the debris. Molten stainless steel or a mixture composed of UO 2, ZrO 2, Zr and stainless steel was slumped into a two-dimensional concrete trap, where volumetric decay heat generation was simulated by an induction heating technique. The results of dry MCCI tests implied that concrete ablation was dominated by melting of aggregates when the debris was crusted and cement was thermally weaker than aggregates. Without presence of stable crust, unmolten aggregates were possible to relocate upward due to the density difference from the debris. Concrete responses under a wet condition showed a tendency that water migrated into thermally degraded concrete. A preliminary water migration model was incorporated into COCO code for transient heat conduction. The prediction by COCO code agreed with the tendency of concrete thermal responses observed in the dry and wet MCCI tests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call