Abstract

This paper proposes to apply the convolution integral method to the novel second-order reliability method (SORM) to further improve its computational efficiency. The novel SORM showed better accuracy in estimating the probability of failure than conventional SORMs by utilizing a linear combination of noncentral or general chi-squared random variables. However, the novel SORM requires significant computational time when integrating the linear combination to calculate the probability of failure. In particular, when the dimension of performance functions is higher than three, the computational time for full integration increases exponentially. To reduce this computational burden for the novel SORM, we propose to obtain the distribution of the linear combination using the convolution and to use the distribution for the probability of failure estimation. Since it converts an N-dimensional full integration into one-dimensional integration, the proposed method is computationally very efficient. Numerical study illustrates that the accuracy of the proposed method is almost the same as the full integral method and Monte Carlo simulation (MCS) with much improved efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call