Abstract

AbstractMarble dust is a hazardous construction/industrial waste generated during the extraction, cutting and polishing of marble‐producing rocks. The present work explores the potential of marble dust to be used as a coating material on metal substrates. For this, the high‐velocity oxy‐fuel (HVOF) spraying route is adopted to deposit marble dust coatings on four different metallic substrates: mild steel, inconel, aluminum, and copper. Liquefied petroleum gas is used as the fuel and nitrogen as the carrier gas while the coating deposition is performed by varying the spray distance over a range from 50 mm to 250 mm. The coating microstructure is studied using a scanning electron microscope (SEM) and the developed phases are identified using an x‐ray diffractometer. The developed coatings are characterized in terms of deposition efficiency, coating thickness and adhesion strength. It is found that the coatings exhibit fairly good interfacial adhesion and thickness values that varied quite significantly with the spray distance. Maximum deposition efficiency of about 68 % is obtained for the copper substrate when the deposition is performed at a spray distance of 100 mm. This experimental investigation thus shows that despite being a waste, marble dust is eminently coatable on several metallic substrates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.