Abstract
The existing Chinese-English machine translation has problems such as inaccurate word translation and difficult translation of long sentences. To this end, this paper proposes a new machine translation model based on bidirectional Chinese-English translation incorporating translation knowledge and transfer learning, and the components of this model include a recurrent neural network-based translation quality assessment model and a self-focused network-based model. The experimental results demonstrate that our method works better on the dataset of machine translation quality assessment task for Chinese-English translation with more information, and the Pearson correlation coefficient of its quality assessment feature vector (such as word prediction vector representation) is higher.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.