Abstract

Co-pyrolysis characteristics of kitchen waste (KW) with tire waste (TW) were studied by TGA-FTIR and Py-GC/MS. The kinetic parameters were calculated by Ozawa-Flynn-Wall (OFW) and the Kissinger-Akahira-Sunose (KAS) methods. TGA-FTIR results indicated that CO2, CO, NO, NH3, SO2, CH and CC groups were the main gases released from the pyrolysis process, finding that a certain coupling synergistic interaction occurred between KW and TW. Co-pyrolysis of KW and TW displayed positive synergy in pyrolysis kinetics, especially at the ratio of 5:5 whose apparent activation energy declined 16.78% (by FWO) and 17.54% (by KAS). The Py-GC/MS results found that co-pyrolysis could increase the total peak area of volatile matters (10.92–15.34%). Moreover, co-pyrolysis could increase hydrocarbons (especially for olefins (13.25–37.42%)) and inhibit non-hydrocarbon compounds (about 63%) of volatile products. In brief, co-pyrolysis of KW and TW could be a potential way for improving quality of pyrolysis oil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call