Abstract

In this research carbon nanotubes (CNTs) and carbon nanofibers (CNFs) were synthesized via self-propagation high-temperature synthesis (SHS). The exothermic reaction between aluminum and iron oxide was used for preparing the heat required for SHS. In addition, the iron produced from the reaction can play as a role of catalyst for growing the CNTs/CNFs in the presence of activated carbon. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman analysis, Thermogravimetric analysis (TGA) and X-ray diffraction (XRD) method were used to characterize the samples. It was found that the amount of activated carbon in the initial powders has an essential effect on the reaction products. In less than 5wt% activated carbon, the SHS process is performed completely otherwise, the activated carbon does not participate in the chemical reaction and acts as strong diluents as well as controller of the reaction factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.