Abstract

Abstract (ID: 2017-170) An experimental study on methanol pool fires bound by ice was carried to research the burning behavior and flow field (within the liquid-phase) of methanol. The experiments were conducted in two parts: 1- in a cylindrical ice cavity/pan (10.2 cm diameter and 6 cm depth) at three different conditions to analyze burning parameters of methanol, 2- in a square glass tray with outside dimensions of 10 × 10 cm and a depth of 5 cm to obtain flow field of methanol pool with a two-dimensional PIV (Particle Image Velocimetry) system. The results of the experiments of the first part show the cold boundaries of the ice cavity/pan act as a heat sink causing considerable heat losses. Thus, burning rates and burning efficiencies are found to be lower with cold boundaries. However, the burning rate values in ice cavity are found to be the highest because of the melting of the ice and expansion of the cavity. The analysis of the results obtained by the PIV system showed the velocity magnitudes and flow patterns in the liquid-phase of icy methanol fire significantly change over the course of burning. In the instants after ignition a horizontal flow induced by Marangoni near the surface was observed. Later on, mixing of melt-water with methanol and sinking of this mixture caused a cycle in the tray that resulted in a vortex appearing in the middle of the pool. Magnitudes of velocity were also observed to increase after ignition. The increase in the velocity magnitudes is expected to significantly impact the melting and size of the lateral cavity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call