Abstract

Chemical coprecipitation was employed to prepare fine particles of barium ferrite with high coercivity (450 kA/m). Magnetic properties of the bonded barium ferrite magnet were measured at different temperatures. The results were found to be fairly close to the theoretical values based on the Stoner–Wohlfarth model. Mechanical milling was utilized to prepare ultrafine dispersed barium ferrite particles. NaF was introduced as a dispersing agent during milling and subsequent heat treatment. The dispersed particles were compacted and then subjected to die upsetting at room temperature. A weak anisotropy in the coercivity and remanence was found in the directions parallel and perpendicular to the compaction direction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call